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Abstract

This paper deals with the dynamics of a cantilevered plate subject to axial flow on both surfaces, directed from the

clamped to the free end. The system loses stability by flutter, a well known fact, but the mechanism of which is

insufficiently well understood. In this paper, a relatively simple numerical model is constructed for examining the

instability and the post-critical behaviour of this fluid–structure system: a nonlinear equation of motion of the plate is

developed using the inextensibility condition; also, an unsteady lumped vortex model is used to calculate the pressure

difference across the plate. The analysis of the system dynamics is carried out in the time-domain. Both the instability and

the post-critical behaviour of the system are studied. Various factors that may influence the system dynamics such as

material damping, the length of the rigid upstream segment and the viscous drag are discussed in detail. A model of the

wake evolution is proposed to explain the hysteresis phenomenon observed in experiments. The flutter boundary and the

vibration modes predicted by the current theory are found to be in good agreement with published experimental data.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A cantilevered plate immersed in an otherwise uniform axial flow may lose stability at high enough flow
velocity by flutter. An everyday example of this phenomenon is the waving motion of flags in the wind.
Obviously, this is a fluid–structure interaction problem. It is now generally understood that the flutter of the
fluid–structure system in question is a self-excited phenomenon; it is not caused by vortex shedding from the
upstream support, nor is it a Kelvin–Helmholtz instability [1,2]. Although this problem appears to be simple at
first glance, it is indeed a challenging one if one considers the vortical wake discharging from the trailing edge
of the plate and the large amplitude and high frequency of the ensuing flutter.

As shown in Fig. 1, cantilevered plates in axial flow may have vertical, horizontal or hanging configurations.
How the gravitational force acts on the plate is the only difference among these configurations. The
geometrical characteristics of a rectangular homogeneous plate are the length of the flexible section L, width B

and thickness h. Normally, there is a rigid segment of length L0 as part of the clamping arrangement at the
upstream end. The other physical parameters of the system are: the plate material density rP and bending
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. Three configurations of cantilevered plates in axial flow: (a) vertical, (b) horizontal, and (c) hanging.
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stiffness D ¼ Eh3=½12ð1� n2Þ�, where E and n are, respectively, Young’s modulus and the Poisson ratio of the
plate material, the fluid density rF , and the undisturbed flow velocity U. The plate may be called a flag, a sheet,
or specifically a two-dimensional plate, when the aspect ratio B=L is large. Conversely, it may be called a strip
when the aspect ratio is small. Historically, the terms flag and strip were frequently used to refer to a structure
with perfect flexibility. However, these terminologies are interchangeable with plate when the bending
stiffness, no matter how small, is taken into account.

Since the dynamics of plates in flow is indeed a huge topic, we need to delimit the type of system considered,
for the purposes of the literature review which follows. Firstly, the structure is considered to be a single flexible
plate of finite length. Secondly, the plate is clamped at its upstream edge; all the other edges are free. Thirdly,
the fluid passes over both surfaces of the plate in the direction from the clamped leading edge to the free
trailing edge; no cross-flow is considered. Finally, the plate is thin and very pliable; hence flutter is expected at
low flow velocities.

Plate flutter has been studied for a long time. An excellent early monograph on this topic was published by
Dowell [3]. A recent review is also available in the book by Paı̈doussis [4].

Taneda [5] investigated flag flutter in a series of carefully conducted experiments; his work may be the
earliest one on flags and strips in the hanging configuration. Datta and Gottenberg [6] conducted similar
experiments on strip flutter and tried to give theoretical predictions of the critical flow velocity Uc in terms of
strip thickness and length; the strip was modelled as a cantilevered beam, and slender wing theory [7] was used
in the evaluation of the aerodynamic loads. Interesting experiments on hanging filaments in a flowing soap
film were conducted by Zhang et al. [1]; one of the important observations made was in regard of the evolution
of the wake vortices and its correlation to system stability. Hanging strips were recently studied afresh by
Yadykin et al. [8] using a nonlinear beam model based on the inextensibility condition [9] and slender wing
theory for the aerodynamics. The latest work on strip flutter was undertaken by Lemaitre et al. [10], who
focused on the possible independence of the critical flow velocity Uc on strip length if the latter is sufficiently
large, as observed in their experiments; a linear beam model and slender wing theory were used in their
theoretical analysis.

In the hanging configuration, a major source of axial tension is gravity. In the vertical and horizontal
configurations, however, the effects of gravity are normally neglected, and so the two arrangements in
Fig. 1(a,b) may be considered to be identical.

Kornecki et al. [11] may have been the first to study plates in axial flow in a vertical/horizontal configuration.
They used a linear beam model for the structure and Theodorsen’s theory [12] for the aerodynamics. The
influence on the critical flow velocity Uc and frequency f c of the circulatory and non-circulatory parts of the
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aerodynamic forces were discussed and correlated to their own experimental results. An extension of their
theoretical work was made by Shayo [13] for plates of finite width B.

Cantilevered plates in axial flow were investigated by Huang [14] and Balint and Lucey [15] for the purpose
of describing, and suggesting treatment for, human snoring caused by flutter of the soft palate. Huang did
experiments and developed an analytical model using Theodorsen’s theory combined with a linear beam
model to predict the critical flow velocity Uc and frequency f c. Balint and Lucey, on the other hand, coupled a
linear beam model with a Navier–Stokes solver.

Guo and Paı̈doussis [16] examined the problem in question in their work on plates in axial flow with
different upstream/downstream structural boundary conditions. They used a linear beam model and obtained
the fluid loads through a direct solution of the potential flow surrounding the plate.

Cantilevered plates in axial flow were studied by Yamaguchi et al. [17], Yamaguchi et al. [18], Watanabe
et al. [19] and Watanabe et al. [20] in order to obtain a better understanding of sheet flutter phenomena, widely
observed in the operation of printing presses and paper machines. Both sets of researchers separately
conducted a large number of experiments to explore the relation between the critical flow velocity Uc and
certain system parameters. In their theoretical work, both Yamaguchi et al. [18] and Watanabe et al. [20]
adopted a linear beam model for the structure. However, Yamaguchi et al. used a linearly varying vortex
model together with a shedding wake to solve the lifting surface problem; Watanabe et al. used Theodorsen’s
theory. Moreover, Watanabe et al. also coupled their structural model with a two-dimensional compressible
Navier–Stokes solver to obtain a few reference results for their analysis.

Tang et al. [21] conducted experiments and used a nonlinear structural model, making use of the
inextensibility condition, to study cantilevered plates in axial flow. They used a vortex lattice model [7] to
calculate the aerodynamic lift over the plate. This work was extended theoretically by Attar et al. [22] to take
into account nonlinearities in the vortex lattice model.

Argentina and Mahadevan [2] investigated the flutter mechanism of cantilevered plates in axial flow by
means of a linear beam model and a simplified analytical model based on Theodorsen’s theory for the fluid
flow. Finally, Shelley et al. [23] conducted experiments in water flow and predicted the flutter boundary by
means of a linear beam model and the localized excitation theory proposed by Crighton and Oswell [24] for
the fluid loads.

In this paper, we study the dynamics of two-dimensional plates in axial flow in the vertical/horizontal
configuration (Fig. 1(a,b)). It is supposed that the plate width B is infinite; both the plate and the
flow surrounding the plate are thus two-dimensional. Although three-dimensional flutter was reported
by Taneda [5], its existence de facto became significant only when the structure flapped wildly at relatively
high flow velocities. On the other hand, it was observed in the experiments by Datta and Gottenberg [6],
Kornecki et al. [11], Huang [14], Yamaguchi et al. [18], Yadykin et al. [8], Watanabe et al. [19], Tang et al. [21]
and Shelley et al. [23] that the spanwise deformation of the structure was very small, at least in a considerable
range of flow velocities beyond the critical point, thus showing that the two-dimensional assumption is
reasonable.

To account for large-amplitude vibrations, a nonlinear equation of motion of the plate is developed
using the inextensibility condition. Material damping is considered to be of the Kelvin–Voigt type [25].
The fluid is supposed to be inviscid and incompressible, and an unsteady lumped vortex model [7] is used
to calculate the pressure difference across the plate. In this model, wake shedding from the plate trailing
edge is considered, using a time-stepping scheme. The pressure difference is decomposed into a lift force
and an inviscid drag force. These fluid loads, together with a viscous drag separately modelled, are coupled
with the equation of motion of the plate, which is then discretized via the Galerkin method. The model
developed in this paper is quite similar to those by Tang et al. [21] and Attar et al. [22] but introduces
certain improvements, notably by taking into account (i) the effect of tension (induced by both inviscid
and viscous forces) and (ii) longitudinal displacements (‘‘contraction’’) of the plate associated with large
lateral oscillations.

With the numerical model developed, extensive simulations have been carried out. The analysis is in the
time-domain, and both the instability and the post-critical behaviour of the fluid–structure system are studied.
The influence of the rigid upstream segment, material damping and viscous drag on the system dynamics
are examined. A flutter boundary is obtained in terms of critical flow velocity Uc versus plate length L.
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The current simulation results are compared with published experimental observations and predictions made
by other theories.

2. Modelling and numerical methodology

2.1. Equation of motion of the plate

The post-critical motions of the plate may be of large amplitude. To account for such large deformations, a
proper nonlinear model should be used. Since it is supposed to be very thin, i.e., h5L, the two-dimensional
plate can be considered as a classical Euler–Bernoulli beam. Moreover, the strain level in the plate is supposed
to be sufficiently small for the centreline length to be considered constant during deformation. Based on this
inextensibility condition and following Semler et al. [9], the partial differential equation governing plate
motion is found to be

rPh €W þD 1þ a
q
qt

� �
½W 0000ð1þW 02Þ þ 4W 0W 00W 000 þW 003�

þ rPhW 0

Z S

0

ð _W 02 þW 0 €W 0ÞdS � rPhW 00

Z L

S

Z S

0

ð _W 02 þW 0 €W 0ÞdS

� �
dS

¼ FL �W 0FD þW 00

Z L

S

FD dS, ð1Þ

V ¼ �
1

2

Z S

0

W 02 dS, (2)

where, as shown in Fig. 2, W and V are, respectively, the transverse and longitudinal displacements of the
plate; S is the distance of a material point on the plate from the origin, measured along the plate centreline in a
coordinate system embedded in the plate; FL and FD are, respectively, the transverse and longitudinal fluid
loads acting on the plate; a is the material damping coefficient, assuming a Kelvin–Voigt model [25]. The
overdot and the prime, respectively, represent temporal and spatial derivatives, i.e., qð Þ=qt and qð Þ=qS. Note
that both Eqs. (1) and (2) are accurate to OðW 03Þ.

It should be mentioned that a one-dimensional equation of motion of the plate, i.e., Eq. (1), is obtained
using the inextensibility condition; Eq. (2) is used to recover the deformed shape of the plate in the fixed X–Y

coordinate system. Moreover, utilizing the relationship €V ¼
R S

0
ð _W 02 þW 0 €W 0ÞdS (see Ref. [9]), Eq. (1) may be

rewritten as

rPh €W þD 1þ a
q
qt

� �
½W 0000ð1þW 02Þ þ 4W 0W 00W 000 þW 003� � ðTW 0Þ

0
¼ F L, (3)

where T is the tension in the plate, defined by

T ¼

Z L

S

ðFD � rPh €V ÞdS. (4)

That is, although the plate is assumed to be inextensible, tension still exists in it, originating from the
longitudinal fluid loading as well as the inertia force of the plate in the longitudinal direction.

Using non-dimensional variables defined as

x ¼
X

L
; y ¼

Y

L
; v ¼

V

L
; w ¼

W

L
; s ¼

S

L
; t ¼

tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q ,
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
; a ¼

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q ; f L ¼
FL

rF U2
; f D ¼

FD

rF U2
, (5)
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Fig. 2. A cantilevered plate in axial flow.
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where f % and f are, respectively, non-dimensional and dimensional vibration frequencies, Eqs. (1) and (2)
become

€wþ 1þ a
q
qt

� �
½w0000ð1þ w02Þ þ 4w0w00w000 þ w003�

þ w0
Z s

0

ð _w02 þ w0 €w0Þds� w00
Z 1

s

Z s

0

ð _w02 þ w0 €w0Þds

� �
ds

¼ mU2
R f L � w0f D þ w00

Z 1

s

f D ds

� �
, ð6Þ

v ¼ �
1

2

Z s

0

w02 ds, (7)

where the overdot and the prime from now on represent qð Þ=qt and qð Þ=qs, respectively. In the non-
dimensionalization, the length of the flexible segment of the plate has been used as the length scale and the

characteristic time of free vibration of the plate as the time scale, i.e., the solid time scale TS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
.

Note that there is another time scale, the fluid time scale, defined as TF ¼ L=U . The ratio of these two time
scales is the reduced flow velocity

UR ¼
TS

TF

¼ UL

ffiffiffiffiffiffiffiffi
rPh

D

r
. (8)

Normally, when URb1, it can be assumed that the response of the fluid flow due to the deformation of the
plate is much faster than the motion of the plate itself; it is not necessary to take into account time-delay
effects. Moreover, of major importance is the mass ratio m defined by

m ¼
rF L

rPh
. (9)

2.2. Model of the fluid flow

The flow velocity U is supposed to be low enough when flutter takes place for the fluid to be assumed to be
incompressible. Also, for simplicity, the flow can initially be considered to be inviscid; however, the effect of
viscosity will be incorporated in the drag FD empirically as a surface viscous force. Under these conditions, the
panel method, in particular the unsteady lumped vortex model, is used to predict the aero/hydrodynamics, as
illustrated in Fig. 3.

The flexible section of the plate is evenly divided into N panels, each of length Ds ¼ 1=N. Individual panels
are put on the deformed contour of the plate centreline. The bound vortices, g1 through gN , together with the
instantaneously formed wake vortex gNþ1 at a given instant, say time step k þ 1, are obtained from the
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Fig. 3. The panel method applied to a cantilevered plate in axial flow.
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following equations:

a11 a12 � � � a1N a1;Nþ1
a21 a22 � � � a2N a2;Nþ1
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. ..
. . .

. ..
. ..
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, (10)

where the influence coefficients aij and the right-hand side ½rhsi; g%�T are given by

aij ¼
ðyCi
� yVj

Þ sin ai þ ð�xCi
þ xVj

Þ cos ai

2p½ðyCi
� yVj

Þ
2
þ ðxCi

� xVj
Þ
2
�

, (11)

rhsi ¼
_vi

UR

� 1� vW i

� �
sin ai þ

_wi

UR

� wW i

� �
cos ai, (12)

g%kþ1
¼
XN

i¼1

gk
i . (13)

In Eqs. (10), gi;i¼1;2;...;N and gNþ1 are, respectively, the strengths of the bound vortices Gi;i¼1;2;...;N and the latest
wake vortex GW1

normalized by UL. In Eqs. (11) and (12), ðx; yÞCi
and ðx; yÞVi

are, respectively, the
coordinates of the bound vortex and the collocation point on the ith panel ðX ;Y ÞCi

and ðX ;Y ÞVi
normalized

by L; ðv;wÞW i
is the wake-induced velocity at the ith collocation point ðV ;W ÞW i

normalized by the
undisturbed flow velocity U. In Eq. (13), the superscript k þ 1 represents the current time step; it has been
dropped for clarity in Eqs. (10)–(12).

The plate is supposed to be initially held in place with a slightly deformed shape. It is then released, and
fresh wake vortices are formed and shed off the trailing edge of the plate. The latest wake vortex is assumed to
be born on the prolongation of the last panel and to have a longitudinal clearance of 0:25URDt from the
trailing edge, where Dt is the non-dimensional time step. For simplicity, it is assumed that the movement of
each individual wake vortex is not affected by the bound vortices or the other wake vortices. Therefore, they
travel downstream with the same velocity as the undisturbed flow; the longitudinal distance between two
neighbouring wake vortices is always URDt.

The shape of the wake street is shown in Fig. 3. In previous studies, slender wing theory (a localized
excitation theory) was often utilized, and the wake was explicitly neglected when considering low aspect ratio
plates, e.g., by Datta and Gottenberg [6], Yadykin et al. [8] and Lemaitre et al. [10]. Wake effects were not
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considered either in the direct solution of the potential flow problem by neither Guo and Paı̈doussis [16] nor in
the studies of Shelley et al. [23] based on localized excitation theory. On the other hand, Theodorsen’s theory
was adopted by Kornecki et al. [11], Shayo [13], Huang [14] and Watanabe et al. [20], and a flat wake on the
extension plane of the plate was considered to satisfy the Kutta condition at the plate trailing edge. A vortex
sheet model and a vortex lattice model were respectively used by Yamaguchi et al. [17] and Tang et al. [21]; in
their implementation, the wake was constrained to be along the neutral plane. An improvement was made by
Attar et al. [22]; a vortex lattice model was again used and the wake vortices were considered to be free to
move in the local flow field.

As shown in Fig. 3, the truncated wake street is assumed to have a normalized longitudinal length lW , and
the total number of wake vortices NW can be determined by NW ¼ lW=ðURDtÞ. Thus, the wake-induced
velocity at the ith collocation point is calculated by

ðv;wÞW i
¼
XNW

j¼1

gWj

2p

ðyCi
� yW j

;�xCi
þ xW j

Þ

ðyCi
� yWj

Þ
2
þ ðxCi

� xWj
Þ
2
, (14)

where gW j
and ðx; yÞW j

are, respectively, the strength and coordinates of the jth wake vortex GW j
normalized

by UL and ðX ;Y ÞW j
by L.

When discrete vortices g1 through gNþ1 are available at the current time step, Dpi, the pressure difference at
the ith panel (DPi normalized by rF U2), can be calculated by the following expression [7]:

Dpi ¼ �
_vi

UR

þ 1þ vW i

� �
cos ai þ

_wi

UR

� wW i

� �
sin ai

� �
gi

Ds
þ

1

UR

q
qt

Xi

j¼1

gj

 !
. (15)

Consequently, the distributions of the lift f Li
and the inviscid drag f Di

over the ith panel are obtained by

ðf Li
; f Di
Þ ¼ Dpiðcos ai; sin aiÞ. (16)

Eq. (16) gives the drag resulting only from the pressure difference across the plate; it is an inviscid drag. There
is no available theory for the viscous drag acting on a plate undergoing oscillations. One approach for
including viscous drag in the model is to use a Blasius-type solution, for either the laminar or the turbulent
case, as a first approximation. However, it was found through extensive tests that the viscous drag calculated
using the Blasius-type solution has a negligible effect on the system dynamics (as confirmed by the work
of Lemaitre et al. [10]), although the results by the present theory do not entirely concur, as will be seen in
Section 3.3. In this paper, a non-dimensional drag coefficient CD is used for the drag acting on the plate due to
the viscous effects of the fluid flow, the effective drag caused by viscous stresses acting on the plate and/or flow
separation. An additional uniform distribution of longitudinal force given by rF U2CD is thus assumed to act
on the plate for simplicity, and the term f Di

in Eq. (16) becomes

f Di
¼ Dpi sin ai þ CD. (17)
2.3. Discretization of the equation of motion of the plate

The traditional Galerkin method is applied to Eq. (6) by assuming that the plate transverse deformation can
be expanded in terms of generalized coordinates qmðtÞ and the linear in vacuo cantilevered beam eigenfunctions
fmðxÞ as

wðx; tÞ ¼
XM
m¼1

qmðtÞfmðxÞ, (18)

where M is the number of modes utilized in the analysis. Eq. (6) thus becomes

€qi þ Aiqi þ aAi _qi þ Bimnlqmqnql þ aBimnlð _qmqnql þ qm _qnql þ qmqn _qlÞ

þ Cimnlqmð _qn _ql þ qn €qlÞ ¼ f i, ð19Þ
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where Einstein’s scientific notation has been used, and the range of all indices i, l, m and n is from 1 to M. The
generalized load f i is given by

f i ¼ mU2
R

Z 1

0

f L � w0f D þ w00
Z 1

s

f D ds

� �
fi ds. (20)

The constant coefficients Ai, Bimnl and Cimnl are given by

Ai ¼ b4i , (21)

Bimnl ¼

Z 1

0

fiðf
0000
m f0nf

0
l þ 4f0mf

00
nf
000
l þ f00mf

00
nf
00
l Þds, (22)

Cimnl ¼

Z 1

0

f0if
0
m

Z 1

s

Z Z

0

f0nf
0
l dz

� �
dZ

� �
ds, (23)

where bi is the ith dimensionless eigenfrequency of a cantilevered beam [26].

2.4. Numerical methodology

To formulate a stable, accurate and efficient time-integration scheme for the solution of Eq. (19) is by no
means a trivial task, due to the nonlinear inertial terms in the equation. The Houbolt method [27] seems to be
the most suitable for obtaining reliable simulation results; it is based on the following two backward
approximations at time step k þ 1:

€qkþ1 ¼

P4
j¼1ajq

k�jþ2

Dt2
; _qkþ1 ¼

P4
j¼1bjq

k�jþ2

Dt
, (24)

where aj;j¼1;2;3;4 ¼ ð2;�5; 4;�1Þ and bj;j¼1;2;3;4 ¼ ð11=6;�3; 3=2;�1=3Þ for the fourth-order scheme.
Substituting Eqs. (24) into Eq. (19), a set of nonlinear ordinary differential equations for the unknown qkþ1

i

is obtained,

Diqi þ l3i þ Eimnlqmqnql þ F imnll2mqnql þ Cimnlqmðl2nl2l þ qnl1lÞ ¼ Dt2f i, (25)

where the superscript k þ 1 has been dropped for clarity, and the time-dependent coefficients l1i, l2i and l3i, at
time step k þ 1, are given by

ðl1i; l2i; l3iÞ
kþ1
¼

X4
j¼2

ajq
k�jþ2
i ;

X4
j¼2

bjq
k�jþ2
i ; lkþ1

1i þ DtaAil
kþ1
2i

 !
. (26)

The constant coefficients Di, Eimnl and Fimnl are given by

Di ¼ a1 þ ðDt2 þ Dtab1ÞAi,

Eimnl ¼ ðDt2 þ 3Dtab1ÞBimnl þ ða1 þ b2
1ÞCimnl ,

Fimnl ¼ DtaðBimnl þ Binml þ BilnmÞ þ b1ðCilnm þ CinmlÞ. (27)

Note that the Houbolt method adopted is a multistep backward scheme; one needs to otherwise obtain the
first three steps to start off the solution. In the present paper, the initial conditions in terms of ðq0

i ; _q
0
i Þ are

prescribed at t ¼ 0, and Eq. (25) with f i � 0 (i.e., the free vibration of the plate) is conveniently utilized to
retroactively obtain ðq�Dti ; _q�Dti Þ and ðq

�2Dt
i ; _q�2Dti Þ, step by step.

The generalized force f i obtained from the fluid dynamics part of the numerical model is assumed to be
known when solving the deformed shape of the plate from Eq. (25) (as well as Eq. (7)). Therefore, for each
specific time step, a subiteration scheme is used to limit the variation between two successive versions
of f i within a prescribed value as small as 1� 10�8 in terms of maxðjDf ijÞ. It should be mentioned that,
through extensive tests, it has been found that the subiteration scheme is not necessary for simulations with
small m (say mo0:8), if proper numerical parameters and initial conditions are used.
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3. System dynamics

3.1. Numerical parameters and initial conditions

There are four parameters in the numerical model of the system: the number of panels N, the number of
Galerkin modes M, the time step Dt, and the length of the truncated wake street lW . The convergence of
simulation results with respect to these four numerical parameters was examined, and it was concluded that
satisfactory convergence is achieved with N ¼ 200, M ¼ 6, Dt ¼ 1:0� 10�3 and lW ¼ 40 when the mass ratio
mo0:8. With larger m, more panels and Galerkin modes and smaller time steps have to be used, and the wake
length becomes less important for obtaining satisfactory results; in particular, convergent values of the
numerical parameters are N ¼ 400, M ¼ 12, Dt ¼ 5:0� 10�5 and lW ¼ 10 when mX0:8. It should be noted
that the solution becomes unstable when the mass ratio mX0:8; however, this difficulty has been overcome by
using the added-mass compensation method [28].

The influence of initial conditions on the system dynamics was also extensively tested, from very small initial
deformations (for example, q0

1 ¼ 1:0� 10�5, q0
i;ia1 ¼ 0 and _q0

i ¼ 0) to relatively large ones (for example,
q0
1 ¼ 0:01 or 0.1, q0

i;ia1 ¼ 0 and _q0
i ¼ 0), as well as from initial deformations in a single mode to those of

combined modes. No dependence of the system dynamics on initial conditions has been observed, even though
the hysteresis phenomenon widely reported in experiments [1,19,21,23] strongly suggests the coexistence of
two stable states (this will be discussed later in this paper).

3.2. Onset of flutter and post-critical vibrations

There are five non-dimensional control parameters in the fluid–structure system: the mass ratio m, the
reduced flow velocity UR, the length of the upstream rigid segment l0, the material damping coefficient a, and
the viscous drag coefficient CD. When the other control parameters are fixed, the system dynamics with respect
to UR is shown in Fig. 4(a,b).

It is seen in Fig. 4(a) that the critical reduced flow velocity is URc ¼ 9:92. When URoURc , the plate remains
in a stable flat state; any small disturbance to the system is attenuated. Flutter occurs when URXURc . With
increasing UR, the flutter amplitude increases monotonically (as shown in Fig. 4(a)); the flutter frequency first
decreases, and then slightly recovers at large UR (see Fig. 4(b)). The decrease in flutter frequency with
increasing UR is qualitatively contrary to what is observed in experiments [5,19,21,23]. This discrepancy may
be attributed to the absence of a proper model for (viscous) drag acting on the oscillating plate; further
investigation on this aspect will be conducted later in this paper.

The time histories, phase plane plots and modes of the post-critical vibrations at UR ¼ 9:95 and 11:18
are, respectively, shown in Fig. 4(c–h), and at a moderate value of reduced flow velocity UR ¼ 13:78 are
presented in Fig. 5(a,b,e). It is observed that when UR is close to URc, the transient is very long and the
system dynamics is almost linear; this may explain the observed small amplitude oscillations at a flow
velocity immediately exceeding the critical point (see Ref. [21]). For the specific case of m ¼ 0:2, the modal
form of the oscillation involves travelling waves (no stationary nodes) of roughly second-beam-mode
shape; there is a quasi-node located at about three-quarters of the plate length. Note that the second-beam-
mode shape can more clearly be observed at low UR, as shown in Fig. 4(g), where the transverse flutter
amplitude and the corresponding longitudinal displacement are relatively small. It can be seen in Figs. 4(g,h)
and 5(e) that, as UR increases, the quasi-node becomes less distinct, while the vibration mode remains
qualitatively the same. The time history and phase plane plot of the longitudinal displacement of the plate tip
are, respectively, shown in Figs. 5(c) and (d); it can be seen that the longitudinal displacement is always
negative. The locus of the plate tip exhibits a figure-of-eight shape as shown in Fig. 5(f); it can be seen in this
figure, as well as easily proved using Eq. (2), that the frequency of the longitudinal vibration is always twice
that of transverse flutter.

As shown in Fig. 4(a), the current theory predicts a supercritical bifurcation. In experiments, however,
flutter commonly occurs in a subcritical manner [1,19,21,23]. All theories to date fail to capture this
characteristic; they all predict a supercritical bifurcation. Some further comments on this are made in the
Conclusions.
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3.3. The influence of l0, a and CD

The effect of varying the length of the upstream rigid segment l0 and the material damping coefficient a on
the system dynamics is shown in Figs. 6 and 7.

When the rigid segment is short, disturbances in the flow due to plate motion affect the flow upstream;
i.e., the upstream flow cannot be treated as a steady uniform flow. When l0 is small, say l0o5, significant
changes occur in the flutter amplitude with small variations of l0. The critical point also depends on the value
of l0. In particular, as shown in Fig. 7, URc ¼ 9:20 when l0 ¼ 1:0; while URc ¼ 9:92 when l0 ¼ 0:01. When l0 is
sufficiently large, the dependence of the system dynamics on it becomes unimportant; eventually, URc

converges to the value for l0 ¼ 1. It is also found that the influence of l0 on the system dynamics becomes less
important when the mass ratio m is large, as shown in Fig. 7.
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On the other hand, as expected, the flutter amplitude becomes smaller when the system has a larger material
damping a. The critical point also depends on the value of a: as shown Fig. 7 for the case of m ¼ 0:2, l0 ¼ 1:0
and CD ¼ 0, URc ¼ 7:05 when a ¼ 0:001; while, URc ¼ 9:20 when a ¼ 0:004.

When taking into account the viscous drag CD, the system becomes more stable, the flutter amplitude is
reduced and the flutter frequency increases, as shown in Figs. 7 and 8. It was observed in the experiments of
Taneda [5] that the value of the fluid-dynamic drag, if evaluated in terms of an equivalent drag coefficient CD,
was about 0.07 before flutter took place and it jumped to about 1.0 at the critical point. Omitting the viscous
drag will considerably underestimate the value of the critical point. In particular, as shown in Fig. 8(a), the
critical reduced flow velocity URc ¼ 9:92 when CD ¼ 0, while URc ¼ 11:08 when CD ¼ 0:8. Another important
role of the viscous drag CD is to increase the flutter frequency; this is expected, because the tension in the plate
is related to the viscous drag according to Eqs. (4) and (17).
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It can be shown that varying l0 and a has little effect on the flutter frequency; but CD does have a significant
effect. As shown in Fig. 8(b), the flutter frequency at the critical point is f %

c ¼ 2:75 when CD ¼ 0; it grows
monotonically to f %

c ¼ 3:15 when CD ¼ 0:8. For the specific system with m ¼ 0:232 experimentally studied by
Kornecki et al. [11], it has been found that f %

c ¼ 2:7 when CD ¼ 0; while f %

c ¼ 3:1 when CD ¼ 0:8, which
agrees very well with the experimental measurement.

However, it is noticed that, when CD is fixed, the flutter frequency may be invariant or even decrease with
increasing UR, as shown in Fig. 8(b) as well as Fig. 4(b); this is contradictory to experimental observations
[5,19,21,23]. This observation suggests that the value of CD should be dependent on the flutter amplitude: the
larger the UR, the larger is the flutter amplitude (see Fig. 4(a)), and the larger the value of CD.

3.4. On the hysteresis phenomenon and the subcritical bifurcation

Hysteresis phenomena have repeatedly been reported in previous experimental observations [1,19,21,23]. In
general, it has been observed that flutter takes place in an abrupt manner: once the flow velocity reaches a
critical point, vibration develops suddenly with a large amplitude. On the other hand, when the plate is already
in vibration and the flow velocity is gradually reduced, the plate may return to rest at another critical point,
lower than the former one. Therefore, a hysteresis loop is formed; i.e., the bifurcation leading to flutter is
subcritical. This hysteresis phenomenon also implies that the dynamics depends on initial conditions; two
stable states coexist between the lower and the upper critical points.

As already remarked, no existing theory is capable of predicting subcritical dynamic behaviour in the flow-
induced flutter. Clearly, this must be due to either a systemic weakness in all the theoretical models, or because
a particular aspect of all (or virtually all) experiments, is not taken into account in the theoretical models.

In all experiments, the plate is of course three-dimensional. Thus, the theoretical assumption that the flow is
two-dimensional ignores all edge-effects, e.g. edge-vortices, the overall effect of which may not be negligible;
there may indeed be a phase lag between their generation and the plate motion. Also, most of the fluid-
dynamics models employed are linear, and the observed hysteresis may be due to fluid nonlinearities.
However, simulations using Navier–Stokes solvers have not shown any hysteresis effects either; still, this may
have been insufficiently explored.

On the purely experimental side of things, it is noted that all experiments have been conducted in a wind or
water tunnel; yet, the effect of confinement was not considered. Furthermore, this effect is not a
straightforward blockage when the plate is fluttering. Recently, for the problem of vortex-induced vibrations
of an oscillating cylinder, Prasanth et al. [29] have shown that a blockage of 5% as compared to 1% has a
profound effect on the dynamics – affecting lock-in and the existence of hysteresis; but both 1% and 5% are
normally considered ‘‘small’’. Clearly, this is not a static effect of increasing the effective flow velocity around
the cylinder, but a more profound effect on the vortical dynamics. In the case of the plate, the amplitudes of
motion are larger at the trailing edge than for the cylinder, and so also is the dynamic blockage; hence this
effect could well be more pronounced.

Some of these possible causes of the observed hysteresis are currently under investigation. In the remarkable
experiments by Zhang et al. [1], it has been observed that the onset of the flutter of a cantilevered plate in axial
flow is accompanied by the evolution of the vortical wake from a von Kármán type to an undulating one.
To demonstrate how a hysteresis might occur due to vortical effects, we have investigated (as a preliminary
exercise) the effect of adding a steady von Kármán-type vortex street to the undulating wake vortices shed
at the trailing edge while in motion; specifically, it is assumed that GV ¼ UL for small motions (when
W ðS ¼ LÞ=Lp0:02) and GV ¼ 0 for larger motions (when W ðS ¼ LÞ=L40:02), where GV is the strength
of a single von Kármán wake vortex. The geometry of the von Kármán wake street is set as SV=L ¼ 0:1
and DV=L ¼ 0:02, where SV is the distance between two successive vortices in the same row and DV is the
distance between either of the two vortex rows to the neutral plane. The result is shown in Fig. 9,
demonstrating that a hysteresis may be obtained. It is stressed that the mechanism here is non-physical, and
only exploratory from the phenomenological point of view; (furthermore, it is not used in the calculations
presented in what follows).

Although not investigated in this paper, some further thoughts as to the nature of the discrepancy between
theory (predicting supercritical onset of flutter) and experiment (subcritical onset with considerable hysteresis)
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may be useful. One possibility is that the usually limited size of the test-section cross-section in most
experiments and the resulting interaction of the wake with the wind/water tunnel walls may be responsible.
Another possibility is that, due to quasi-ubiquitous imperfections, spanwise bending would stiffen a plate in
experiments prior to the onset of flutter, but such bending could be partly ironed out at post-critical flows,
thus generating a hysteresis.

3.5. Dynamics of the system with various m

In Fig. 10, we examine the flutter boundary in terms of the mass ratio m. The flutter boundaries predicted by
other theories [2,14,16,17,20,23] and the corresponding published experimental data [11,14,18,19,21] are also
presented. The present theory is found to be in better agreement with the experimental data than can be
achieved by other theories.

In Fig. 10, UR=m is used as the ordinate, which can be written as UR=m ¼ ½ðrPhÞ3=2=ðrF D1=2Þ�U . Moreover,
the mass ratio m can be written as ½rF=ðrPhÞ�L. Therefore, Fig. 10 actually reveals the relation between the
critical flow velocity Uc and the plate length L, the most controllable parameter in experiments, when the
other physical parameters (rP, rF , h and D) of the fluid–structure system are fixed.

All the theoretical and experimental data presented in Fig. 10 indicate the same trend for the flutter
boundary: when the plate is short, Uc is very sensitive to L; while, when the plate is sufficiently long, Uc is
almost a constant. In general, Uc decreases with increasing L. However, within the range 1:0omo1:2, there is
a local rise and then subsidence in Uc as L increases; a subtle transition in the flutter mode shape occurs in this
interval (refer to Figs. 12(c) and (d) to see the difference between the vibration modes when m ¼ 1:1 and 1.2,
respectively).

As for the large scatter in the experimental data shown in Fig. 10, we attribute this to the difficulty
encountered in setting up the experiments. Moreover, the plates used in different experiments have different
aspect ratios, different lengths of upstream rigid segment, different levels of internal damping, and the
experiments themselves have been carried out in different wind or water tunnels with different geometries; all
these factors will cause variations in Uc. Nevertheless, it is very interesting to notice that most theoretical
predictions are in better agreement with most experimental data when m is large. This implies that all the
possible factors mentioned above have much less influence on the stability of the system when the plate is long.
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Along the flutter boundary shown in Fig. 10, the flutter frequencies f %

c at various values of m have been
obtained and presented in Fig. 11. Similar to Fig. 10, the purpose here is to reveal the relation between f c and
L when the other physical parameters (rP, rF , h and D) of the system are fixed, Fig. 11 uses f %

c =m
2 ¼

½ðrPhÞ5=2=ðr2F D1=2Þ� f c as ordinate, and m is written as ½rF=ðrPhÞ�L. It can be seen in Fig. 11 that f %

c has the same
trend as Uc in Fig. 10: f c is very sensitive to L for short plates, and it is almost invariant for long plates; f c

generally decreases as L increases, but there is a local rise and then subsidence for 1:0omo1:2. The
experimental measurements of the frequencies at the flutter boundary made by Kornecki et al. [11], Huang [14]
and Tang et al. [21] are also presented in Fig. 11; it can be seen that the present theory agrees with
experimental observations very well. It should be noted that, due to the difference in the normalization
methods used and the lack of exact values for the physical parameters of the system, the experimental results
obtained by Yamaguchi et al. [18] and Watanabe et al. [19], as well as all the previous theoretical predictions
for f c, cannot be included in Fig. 11.

Flutter modes of the system with different values of mass ratio m, obtained at the corresponding critical
points URc , are shown in Fig. 12. We have found through tests that, for a given m, the flutter mode of the system
at different post-critical flow velocities is qualitatively the same, although the vibration amplitude and some
other aspects (for example, the location and girth of the quasi-node) may vary. As shown in Fig. 13, when
comparing these vibration modes with the experimental observations by Tang et al. [21] for m ¼ 0:30 and
Watanabe et al. [19] for m ¼ 2:7 and 35.7, good agreement is found. It can be seen from Fig. 12 that, as m
increases more and more, higher-order modes participate in the dynamics and they become increasingly
significant. It is also interesting to see that a pure first-mode flutter never happens for any value of m; cf. Ref. [4].
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Fig. 13. The vibration modes at various values of m predicted by the present theory and observed in previous experiments: (a,c,e) predicted

by the present theory; (b,d,f) observed in previous experiments. (a,b) For the system with a small m studied by Tang et al. [21], m ¼ 0:30;
(c,d) for the system with a medium m studied by Watanabe et al. [19], m ¼ 2:7; (e,f) for the system with a large m studied by Watanabe et al.

[19], m ¼ 35:7.
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4. Conclusions

In this paper, a nonlinear equation of motion of the plate is developed using the assumption of
inextensibility of the centreline; the longitudinal displacement of the plate has been taken into account. Also,
an unsteady lumped vortex model is used to calculate the pressure difference across the plate. The pressure
difference is then decomposed into a lift force and an inviscid drag force. A viscous drag coefficient is also
independently considered in the model. The fluid loads thus obtained are coupled with the plate equation of
motion.

The analysis of the system dynamics is carried out in the time-domain. Not only the flutter boundary but
also the post-critical behaviour of this fluid–structure system have been investigated. Through extensive
numerical simulations, various factors affecting the system dynamics, such as the upstream rigid segment
length, the material damping and the viscous drag, have been carefully studied.

A flutter boundary is obtained in the form of critical flow velocity versus the length of the flexible plate. It is
found that the critical flow velocity is very sensitive to plate length when the plate is short, while it is almost
invariant when the plate is sufficiently long; cf. Ref. [30]. Normally, a longer plate has a lower critical flow
velocity. However, in some parameter ranges the critical flow velocity may become locally higher with
increasing plate length. The flutter boundary and flutter frequencies/modes obtained using the present theory
are compared with available experimental data and the results of other theories. The current theory achieves
better agreement with the experimental data than other theories.
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Finally, the most important discrepancy between the present theory, indeed all theories, and experiment has
been discussed in Section 3.4, namely the fact that theory predicts a supercritical onset of flutter, while
experiment in most cases that it is subcritical, with a strong hysteresis. Although no definite resolution of this
discrepancy has been achieved, some useful comments and suggestions are offered.
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